
DevOps
Foundations:
A Primer
Adam Bertram

In This Paper

DevOps is a key enabler for organizations looking to integrate their

software delivery pipeline into their IT infrastructure as smoothly and

quickly as possible. When done properly, it delivers great business

value. The problem is, it often isn’t done properly. Here’s what you

need to know.

Highlights include:

•	 Start with a plan, rather than just “buying tools”

•	 DevOps is a team effort, and trust is at the core

•	 What a proper “continuous integration/continuous delivery” process

looks like

1

Contents

Easy Does It: ‘Continuous’
Is Key� 2

Getting Started with Continuous
Integration� 4

The Last Mile: Continuous
Deployment and Delivery� 7

2D E V O P S F O U N D AT I O N S: A P R I M E R

If it’s done right, the “continuous” process of DevOps

will provide your customers value much, much faster

than you could possibly do it manually. Value ASAP. And

that value doesn’t just end, as you’ll be delivering fixes,

updates, and improvements on a smooth, predictable

cadence, rather than huge “service pack”-style updates

as in the past.

Organizations understand this, too, so they buy and

implement scripting, automation, and testing tools,

and cloud infrastructure. But without a solid plan, they

often end up spending more time, not less, on the very

tasks they’re trying to avoid.

It’s often not their fault. One of the biggest issues with

tooling is the way companies market their products.

Many vendors make it seem so easy to implement “the

DevOps”: “Just buy a tool and your problem is solved!”

This sentiment is far from the truth.

Organizations need to learn what DevOps is from a cul-

tural and process perspective first, instead of thinking

a tool will solve all their problems. Before purchasing

a CI/CD tool, for instance, organizations should learn

“The Three Ways,” for example.

“DevOps” is certainly a catchy industry buzzword.

Like many such buzzwords, though, the phrase may be

common, but understanding what it really means, and

how it could affect—and even disrupt—your data center

and larger infrastructure is less well known.

This Gorilla Guide Tech Brief aims to help fill in that

knowledge gap. It goes over the fundamentals of

DevOps, including what it actually is, how to properly

prepare your environment for it, and some of the core

concepts surrounding it.

When you’re done, you’ll have a much better grasp

of DevOps, and likely want to find a way to integrate

at least some parts of it into your processes, as it has

numerous advantages.

Easy Does It: ‘Continuous’ Is Key
The first, most important thing to understand is that

DevOps streamlines IT operations via automation.

Continuously delivering value to end users, the busi-

ness, and the rest of the teams inside an organization

has always been crucial. But why are we hearing about

it so much now? What is this whole DevOps thing, and

does it live up to the hype?

DevOps, and its set of continuous processes, known as

continuous integration, continuous delivery, and continuous

deployment, are hot. Why? Because it delivers continu-

ous value to your customer.

But to get there, organizations must start slow to move

fast. It may sound contradictory, but it isn’t. It means

that if you’re going to do this “continuous” thing right,

you need to go about it in a methodical, highly planned

way. “Seat of the pants” IT won’t get it done, in other

words—that spaghetti won’t stick to the wall.

2

“The Three Ways” are the three pillars
that support the DevOps foundation. The
blog “The Three Ways: The Principles
Underpinning DevOps” describes them as
“the values and philosophies that frame the
processes, procedures, practices of DevOps,
as well as the prescriptive steps.”

The pillars, in order, are:

•	 Systems thinking

•	 Amplify feedback loops

•	 A culture of continual experimentation
and learning

The concepts for each pillar are more fully
defined in the blog.

The first, most important thing
to understand is that DevOps
streamlines IT operations via
automation.

https://itrevolution.com/the-three-ways-principles-underpinning-devops
https://itrevolution.com/the-three-ways-principles-underpinning-devops
https://itrevolution.com/the-three-ways-principles-underpinning-devops

3D E V O P S F O U N D AT I O N S: A P R I M E R

If organizations start slow by learning not only tools

but DevOps culture and how DevOps can deliver

more business value, implementing one of the most

important aspects of DevOps—the continuous pipe-

line—increases your chances of success.

CONTINUOUS INTEGRATION/
DELIVERY/DEPLOYMENT

One of the most important components of DevOps

tooling is the pipeline. Referred to as the “build/

release” or just “continuous integration/continuous

delivery/deployment (CI/CD)” pipeline (Figure 1), this

construct is automation on steroids—it’s the crux of

quickly delivering value to customers.

A CI/CD pipeline typically has two to three different

stages or phases:

Continuous Integration
The first stage of a pipeline is CI. This is the practice of

storing code in a repository that applies version con-

trol—Git, for instance—and automatically triggering a

build. This build performs whatever necessary steps on

the code to create an artifact, or a single unit, that can

be deployed to an environment.

CI is also a great place to integrate testing. When a

developer writes code, that code needs to be tested

before allowing a customer to run it. Integrating

automated testing in the CI phases allows organizations

to build a gate. That gate will halt the stage unless all of

the tests pass.

Once an organization understands how DevOps can

transform its software deployment workflows, it’s

time to ask some hard questions and follow some best

practices, including:

•	 Notice patterns. Why does that application build

keep failing?

•	 Start paying back technical debt. What workarounds

and hacks have you put in place just to get the job

done? Organizations must first fix the underlying

issues before even thinking about taking an applica-

tion and sprinkling a little DevOps on it.

•	 Use one new tool at a time. How many shiny services

and tools has your organization rolled out recently?

You may not be properly taking the time to learn how

each works. Start slow and don’t get overwhelmed.

•	 When is the last time you updated documentation?

Just because one or two people on your team know

how things are done doesn’t mean everyone else

does. Document everything. Even include it with

your builds, and make it a requirement for every

new feature.

•	 Communication is key between both the engineers

and management. Engineers have a habit of doing

their own thing without regard to the business, but

DevOps is all about business value. It’s about bringing

the business and the technology together. Bring in

managers to your daily standup meeting, and build

teams with representatives from all areas of the

business to ensure everyone weighs in on changes.

Figure 1: A typical continuous integration/continuous delivery pipeline

Plan Code Build Test Release Deploy Operate

CONTINUOUS
INTEGRATION

CONTINUOUS
DELIVERY

4D E V O P S F O U N D AT I O N S: A P R I M E R

DEVOPS IS A MARATHON,
NOT A SPRINT

If your organization develops software or wants a

quicker way to deploy infrastructure and isn’t using

DevOps and CI/CD pipelines, you’re missing out. These

processes can transform organizations from slow-mov-

ing, unwieldy behemoths to nimble, agile gazelles.

But first, teams must understand the underpinning of

DevOps, instead of simply throwing tools at a problem.

CI/CD, through its many “continuous” layers, creates

stepping stones to steadily implement more automation

into the software development lifecycle. Start out slow.

Document specific areas to improve on. Bring business

stakeholders together and understand not just technical

problems, but business problems. If you do that, finding

and buying the right tool to build your CI/CD pipeline

will be the easy part.

Now that you understand why DevOps is changing the

way companies do IT, it’s time to dig into the details.

The next section introduces the practical steps neces-

sary to transform your business with DevOps.

Getting Started with Continuous
Integration
The first section introduced DevOps and one of its

key goals, a smooth CI/CD pipeline. Let’s assume that

you’ve studied, planned, and are ready to implement

some tools. The first that most developers use is a

source control system like GitHub.

That’s a great first step. But now you have another

problem: You and your team have to remember to kick

off some other routines once new code is checked in.

You may have to run tests on that code and launch a

Continuous Delivery/Deployment

The second (and optional third) phase is continuous

delivery/continuous deployment (CD). The terms are

sometimes used interchangeably. Deciding when to

use one or the other depends on the extent to which an

organization plans on automating the entire software

development and deployment process.

The CD stage typically takes the artifact that the CI

process builds and automatically deploys that artifact to

a testing environment.

CD then takes automation one step further by send-

ing the artifact to infrastructure and installing it.

Infrastructure could be a virtual machine, a container,

some serverless model, or even bare metal servers.

Once the software is deployed to a testing environment,

other teams like QA can perform manual testing or

other final validation checks.

When everyone is happy with the final result,

organizations can go the final mile and implement a

continuous deployment phase. In this optional phase,

the pipeline is 100% automated. Software is built,

tested, and deployed in a test environment. The pipeline

then runs various integration and acceptance tests in

the test environment. If all tests pass, the software is

immediately deployed to production, where it then goes

through another round of automated tests. If all is well,

the deployment is successful.

Mature DevOps organizations can deliver value to their

customers lightning fast—in fact, some companies are

building code with CI and deploying it with CD 50-plus

times per day. Part of that is how quickly their processes

can find and fix bugs. A complete CI/CD pipeline throws

all manual steps out the window.

Although “continuous delivery” and “con-
tinuous deployment” are often considered
synonyms, this isn’t accurate. See The Last
Mile: Continuous Deployment and Delivery
for a detailed breakdown of the differences.

One of the most important
components of DevOps
tooling is the pipeline.

5D E V O P S F O U N D AT I O N S: A P R I M E R

TESTING WITH CONTINUOUS
INTEGRATION

No one likes testing code manually, and forgetting

to test or just being lazy can introduce bugs, security

vulnerabilities, and more into your application.

Perhaps you’re working on a web application that your

team is continually updating. You should ensure all

changes to the code have been tested. That’s going to

get old real quick if you must perform a set of tests

for every code commit. Testing manually is not only

cumbersome, but also prone to fail. We’re humans and

we make mistakes. That’s where testing with CI comes

into play.

Unit tests, which is a testing methodology that ensures

code runs how you’d expect, is a common type of test

suite to run. Unit tests are great to include in a CI

process—once a CI process is set up, unit tests will

run automatically, alleviating the task of manually

running them.

Testing in CI is called Continuous Testing (CT). CT is

crucial to building an overall, automated testing solu-

tion. CT eliminates several manual steps, including:

•	 Manual regression testing

•	 Manually building code to verify behavior

•	 Manual code inspections

build process that compiles the code, creates an artifact,

and performs other mandatory tasks to get the code to a

deployable state.

Doing that manually is at the very least challenging,

and at most impossible to do right, especially in this age

of quick development. What you need is to automate the

next phase of the software development lifecycle (SDLC)

as sown in Figure 2.

In other words, you need continuous integration (CI),

which you were introduced to in the previous section.

WHAT IS CONTINUOUS INTEGRATION?

CI is an automated workflow that’s automatically

triggered by a source code “commit.” That build

process could be anything necessary to get the code

into a deployable state, like compiling it, moving it to a

specified location, and, typically, packaging it up.

The build process either creates some sort of artifact to

be used later, or simply stores the code to be used later

by the continuous deployment (CD) process.

CI is just the first step in the automation process of

“continuous everything,” but some would argue it’s the

most important. Why? Without CI, there’s no code to

deploy in the first place! The CI process grabs the code

from source control and packages it up so the deploy-

ment process knows what to deliver.

For example, let’s say you have a C# web application

you want to deploy to an Azure App Service for a front-

end serverless application. The C# web application

needs to get to the Azure App Service somehow. It needs

to be deployed. But the deployment can’t happen unless

the C# web application runs through a build process to

get it into a deployable state.

Figure 2: The software development lifecycle

Planning

DesignTesting

Maintenance

Software
Development

Life Cycle

Implementation

A “commit,” in software development
terms, is when a change is made to a piece
of software, and then uploaded to the source
code repository, such as GitHub.

6D E V O P S F O U N D AT I O N S: A P R I M E R

GitHub Actions can build code, run tests, and deploy

build artifacts if needed. It can do this on any platform

right from GitHub. You might be at a disadvantage,

though, if you and your team are using a competing

source control product.

Azure DevOps is another great CI tool, and provides

a complete CI solution. Azure DevOps, unlike GitHub

Actions, can trigger a CI process from not only GitHub

but also Azure’s own source control product, Azure

Repos, and many other source control products.

Azure DevOps has plenty of other tools built-in, as well,

including a Wiki, ticketing system, and testing mecha-

nisms. Azure DevOps is free for up to five projects, and

you can create an organization with an Azure account.

START AUTOMATING NOW

Performing code builds manually is not only time con-

suming but error-prone. Although building a CI process

into your pipeline involves a lot of upfront planning

and work, it saves considerable time and money over

the long run.

Take a look at Figure 3, which shows a popular

Microsoft CI tool called Azure DevOps. Perhaps

you’re working on a project written in PowerShell.

Pester is a great testing tool for PowerShell. Pester

allows you to write many types of unit tests for the

PowerShell language.

Figure 3 shows a task in Azure DevOps called Pester

powershell unittests, which could be configured to run

Pester tests automatically as part of the CI pipeline. You

can specify the test file pattern, any testing parame-

ters, and tags.

This task in Azure DevOps is similar in concept to many

other CI tools—it allows you to inject different tasks in

an overall pipeline to run automatically.

HELPFUL CONTINUOUS
INTEGRATION TOOLS

A CI pipeline is important for automated builds and

software testing, and there are myriad options. Here are

three of the most popular.

Jenkins is an open source CI/CD tool. It’s been available

for many years, and is one of the oldest CI tools out

there. Because it’s a plugin-based tool, a user can

customize nearly every aspect of their platform using

publicly available plugins. This customization ability of

Jenkins is one of its key advantages.

The second tool on the list, and one taking the world

by storm, is GitHub Actions. GitHub Actions is popular

because it’s free to use and embedded right into GitHub.

GitHub is a hugely popular source control product—due

to its popularity, it makes any CI product built directly

on it a good CI option.

Figure 3: An Azure DevOps continuous integration tool, known
as Pester Powershell unittests

GitHub Actions is part of GitHub, the
most popular code repository and developer
collaboration platform in the world. GitHub
has free and paid versions, and is used by
roughly 50 million developers.

Although building a CI process
into your pipeline involves a lot
of upfront planning and work,
it saves considerable time and
money over the long run.

https://www.jenkins.io/
https://docs.github.com/en/actions
https://github.com/

7D E V O P S F O U N D AT I O N S: A P R I M E R

application running in Internet Information Services

(IIS) on a Windows server. A typical IIS web application

requires IIS applications, application pools, binding, SSL

certificates, and more. To increase efficiency, you take

the next step in automation and create a script for all

these things. That’s good, but you still have to run that

script manually.

Using continuous delivery, you could leverage that

automation code you wrote and integrate it directly into

the CI pipeline. This ensures the required configuration

is applied to a server. The integration saves time

for both you and the developer, who doesn’t need to

request a manual deployment.

The continuous delivery process takes the extra step

and deploys the code to a testing environment, making

it available for someone else to perform other tests on.

CONTINUOUS DEPLOYMENT

Continuous deployment is similar to continuous delivery,

but not exactly the same. Continuous deployment takes

the next—and final—step of deploying code to an

environment. Continuous delivery, on the other hand,

gets the code up to that point and waits for approval. In

continuous deployment, the entire process is performed

automatically in a continuous deployment pipeline, with

no approvals whatsoever.

There might be a schedule in place, or perhaps the

deployment is done immediately. The automated

deployment process can occur in any environment,

including a testing or production environment.

Code testing is one of the most important aspects

of continuous deployment apart from automating

Now that you know how to get started with DevOps, it’s

time to move on to the ultimate goal for most organiza-

tions: A completely automated process for deployment

and delivery of software.

The Last Mile: Continuous
Deployment and Delivery
As you’ve learned, CI has huge benefits for an organi-

zation. The ability to commit code and have it built in a

centralized location that all developers are committing

to is the key to getting the code ready to use.

But CI is just the beginning. How do you deploy the

software to perform further testing, and finally deploy

it to a production environment? That’s where continuous

delivery and continuous deployment come into play.

CONTINUOUS DELIVERY

Think about the last time you had to deploy software

to an environment, as either a developer or IT admin.

It’s never as easy as just installing software. There

are always different packages to install, configuration

items to remember, and so on. Even with a document

playbook, we’re human and make mistakes. And these

mistakes are compounded by the increased frequency of

software updates these days.

Eliminating those errors involves taking the next step

in automation and applying continuous delivery.

For example, let’s say you’re a server admin and

a developer shows you the location of a new web

A foundational book on building great
DevOps is “The DevOps Handbook: How
to Create World-Class Agility, Reliability,
and Security in Technology Organizations.”
It’s full of great instruction and advice. It’s
considered by many to be the definitive
guide to DevOps.

The continuous delivery process
takes the extra step and
deploys the code to a testing
environment, making it available
for someone else to perform
other tests on.

https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002/
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002/
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002/

8D E V O P S F O U N D AT I O N S: A P R I M E R

package. They won’t go into your house, of course,

but you’re not getting value from that package until it

enters. And it’s not entering until you approve it.

Continuous deployment, on the other hand, is equivalent

to allowing the driver to open your door, set the pack-

age inside your house and leave. The package has been

delivered to its final destination (inside your house).

Sounds simple, right? But this difference is rarely

simple in the real world. For an organization to go

from continuous delivery to continuous deployment

requires a well-developed culture of monitoring,

on-call support, and having the ability to recover an

environment quickly.

And the culture doesn’t apply to just one team—every

team has responsibility for this. Continuous deployment

requires everyone—front-end devs, back-end devs,

infrastructure, cloud engineering, and every other IT

team—to be on top of how the application is integrated

into an automated process. You can’t just throw some

automation code into a pipeline and call it a day.

Continuous deployment is the last step in the CI/CD

journey. If an organization trusts the process, it can

eventually reach 100% automation.

application delivery. Automated testing often means

the difference between deploying an application with or

without bugs. A bug can easily take down a production

system if it’s not tested before deployment.

A correct implementation of continuous is achieved

when the process is trusted and there are no occurring

issues like a system crash during deployment. Trust is a

huge factor in a continuous deployment pipeline.

DELIVERY VS. DEPLOYMENT

At this point, you may be wondering what the

differences are between continuous deployment and

continuous delivery. From an automation perspective,

there’s one critical difference, shown in Figure 4.

Think about the two processes in terms of delivering

a package to your door. You can think of continuous

delivery as when the delivery driver drops off the

Figure 4: The difference between continuous delivery and continuous deployment is subtle, but vital

Code Done

CONTINUOUS INTEGRATION

CONTINUOUS DELIVERY

AUTO

Unit Tests
AUTO

Integrate
AUTO

Acceptance
Test

Deploy to
Production

MANUAL

Code Done
AUTO

Unit Tests
AUTO

Integrate
AUTO AUTO

Acceptance
Test

Deploy to
Production

One useful tool for the “Dev” part of
“DevOps” is “smoke tests,” which are
designed to find weaknesses in a new piece
of code, like errors or other bugs that will
keep your program from running properly.
Smoke tests can find flaws that may not
show up any other way.

The CircleCI blog “Smoke Tests in CI/CD
Pipelines” provides a good overview of what
smoke tests are, with real-world examples.

Trust is a huge factor
in a continuous
deployment pipeline.

https://circleci.com/blog/smoke-tests-in-cicd-pipelines/

9D E V O P S F O U N D AT I O N S: A P R I M E R

In other cases it may not, however, and by design.

Because of the thorough requirements to ensure an

application’s resiliency and the planning that must go

into the process ahead of time, many organizations

choose to stay at the continuous delivery step.

ENJOY THE DEVOPS JOURNEY

That wraps up this introduction to DevOps. Both

continuous delivery and continuous deployment help

complete the journey to automating an app’s entire

deployment process, seamlessly combining both Dev

and Ops into something resembling a single team with

a single goal.

It doesn’t happen, though, without careful planning,

buy-in from all stakeholders, and the right automa-

tion tools.

Which process an organization follows depends not only

on the tools, but also trust. To achieve full automation

of an important software application, organizations

must trust the teams and the process, and continually

learn. They must decide how far they’re willing to go to

deliver value to their customers.

More automation is always a good thing, but it has an

upfront cost in terms of planning, team collaboration,

and trust. If you’re ready to pay that price, you’ll find

the benefits more than worth it.

Happy automating!

For an organization to go
from continuous delivery to
continuous deployment requires
a well-developed culture of
monitoring, on-call support, and
having the ability to recover an
environment quickly.

	Easy Does It: ‘Continuous’ Is Key
	Getting Started with Continuous Integration
	The Last Mile: Continuous Deployment and Delivery

